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Abstract. The explicit construction of modules (irreducible and indecomposable) for the 
BRS and full BRS algebras are presented. The existence of parent and daughter phenomena 
provides a natural basis for the introduction of the metric. The structure of BRS and full 
BRS transformation groups and the corresponding ‘Campbell-Housdorff’ formulae are 
discussed. The relevance and genesis of BRS symmetry groups are briefly analysed in the 
framework of fibre bundles. 

1. Introduction 

Becchi et a1 [ 11 found a global transformation ( BRS transformation) of fields under 
which the Lagrangian density is invariant in the Yang-Mills formalism. The corre- 
sponding algebra ( BRS algebra) has some interesting properties. Its representations 
have been investigated by Kugo and Ojima [2] and Nishijima [3]. In this paper we 
discuss the construction of BRS modules exhaustively. 

In § 2, we follow Kugo and Ojima and give the genesis of the BRS algebra and 
extended BRS algebra. The BRS algebras so obtained are 2, graded. In § 3, we construct 
irreducible and indecomposable modules. The construction of the metric is discussed 
in 4 4. We show how this can be achieved in a very straightforward and natural way 
by imposing physical requirements on the modules. Our method differs from 
Nishijima’s in the construction of the metric. We first construct the modules, show 
how the natural orthonormal basis yields the metric and show that the transformation 
of various states (singlets, doublets, etc) is a straightforward consequence of our 
construction. 

In § 5 ,  we construct the corresponding groups which are super-Lie groups [4] in 
the spirit of Pais and Rittenberg [5]. These groups act on a graded vector space as 
transformation groups. 

In 9 6 we resort to the fibre bundle structure of gauge theories to establish the 
connection between BRS symmetry groups and the corresponding BRS transformation 
of fields. The ‘geometric’ nature of auxiliary fields is also discussed. 

2. Generation of BRS symmetries 

The Yang-Mills type gauge theories based on a compact semisimple Lie group G is 
briefly outlined here. Let g be the Lie algebra of G with generators { X , }  satisfying 

[x , ,  x,] = iybcXc.  (2.1) 
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Let e,( A, (0) be a Lagrangian density which is invariant under local gauge transforma- 
tion, the infinitesimal form being 

SAAZ = a,A" + gabfbcdA;Ad = D:bAb ( 2 . 2 a )  

SAQI = igab,4"Tb,QJ ( 2 . 2 6 )  

where A; and (0, denote respectively gauge and matter fields. Here, the A" depend 
on the space- and time-dependent parameters, the T" are the matrix representation 
of X "  on (0 and 

gab = B"bg,  ( 2 . 3 )  

the coupling constant g ,  being the coupling constant associated with G, and corre- 
spondingly G = n ,  G,. This factorisation is always possible as G is assumed to be 
compact. The operators DZb in ( 2 . 2 0 )  are the covariant derivatives for the group G. 
We use the following notation throughout the text: 

( A X  B)" = f o b c ~ b ~ c  A *  B = A " .  B" ( 2 . 4 ~ )  

( M @ ) 8  = M Z ) ( O J  (gA)" = gabAb. ( 2 . 4 b )  

Let us consider the Lagrangian density 

Y = 2's + 2 G F +  2'Fp 

where G F  and FP denote respectively the gauge fixing and compensating FP ghost 
parts given by 

( 2 . 5 a )  

( 2 . 5 6 )  

Here the B" denote multiplier fields and c, E are Hermitian FP ghost fields. 
The Lagrangian density 2 is no longer invariant under the local gauge transforma- 

tion ( 2 . 2 )  due to the presence of TFP and YGF. However, there is a global symmetry, 
namely the BRS symmetry. The global transformation known as the BRS transformation 
is obtained by replacing the space- and time-dependent parameters A"(x) in (2 .2)  by 
C " ( x )  for ordinary fields A: and Qi and giving the transformation of c, 2 and B as 
follows: 

SA,(x) = D,c(x) ( 2 . 6 a )  

6Q(x) = ic(x) gTQ(x)  ( 2 . 6 6 )  

ZGF = -apB * A, + f a o B .  B 

TFP = -iapE * D,c. 

Sc(x) = -4g(c(x) x c ( x ) )  

S B ( x )  = 0. 

SE(x)  = i B ( x )  

( 2 . 6 ~ )  

( 2 . 6 d )  

(2 .6e)  

The BRS invariance of 2' follows from local gauge invariance of ZS(A,  (0) and the 
properties 

S( D,c) = 0 S ( c x c ) = O .  ( 2 . 7 )  
Using Noether's theorem, the conserved charge QB (the BRS charge) given by 

QB = I d3x[ B z,c +gB * ( A ,  x c) +figa,E- ( c  x c)] (2 .8)  

generates the BRS transformation, i.e. 
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where ql represents A,, a,, c, E and B as given by equations (2.6). 
There exists another conserved charge which comes out because of the invariance 

of 9 under a scale transformation c+eec  and E+e-'E (unlike the usual phase 
transformation invariance giving the conserved fermion number). 

The eigenvalue of this charge gives the FP ghost number. The charge corresponding 
to the above scale transformation is given by 

Qc = i d'x [ Z .  aoc+gE(A,x c)]. (2.10) i 
Qc, the FP ghost charge, generates the scale transformation on the FP ghost fields: 

(2.11a) 

(2.1 1 b) 

QB and Qc satisfy the following algebra called the restricted BRS algebra: 

% Q B ,  Q B l + =  Q i = O  (2.12a) 

[ i o c ,  O B I  = QB. (2.12b) 

Since FP ghost fields are Hermitian, we have 

G= QB and Q: = Qc. (2.13) 

In this formalism c and E do not have symmetric rules as seen from equation (2.6). 
We consider another BRS transformation [6] (anti), replacing c by E in equations 
(2.6a)-(2.6c), i.e. 

8A, = D,E (2.14a) 

80 = i E .  g iTJ  (2.14b) 

8E = -ig( E x E )  (2 .14~)  

8c = - ( E  x c)  - iB (2.14d) 

8B = -gE x B. (2.144 
Considering the invariance of 2 under (2.14) and following an identical procedure 

as in the case of the BRS transformation, we obtain the corresponding conserved charge 

&=I  d3x[B .  DoE-doB*E+iig(ExE). Docl (2.15) 

and [ ioB ,  913T = 8 P l ,  where the (anti)commutator should be taken for V I  with (odd) 
even powers of FP ghosts. 

O B  as 

Now, we have a full BRS algebra: 

( 2 . 1 6 ~ )  

(2.16b) 

(2 .16~)  
We may remark here that the superfield formulation of BRS algebra can be carried 

out. In such a formulation Bonora and Tonin [7] have shown that the BRS charges 
are generators of translation in superspace. 
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3. Representation of BRS algebra 

We first note that the BRS algebra is Zz graded, i.e. L = & @ Li and similarly for L'. 
Since [ LT, Li] = 0 and & is one dimensional, we observe that the only finite-dimensional 
irreducible modules are one dimensional and hence trivial [8,9]. This also holds true 
for L'. We now demonstrate that the L (15') modules which are reducible are not 
completely reducible. As an illustration consider the adjoint representation of L (L'). 

3.1. Adjoint representation of L and L' 

Let V be an L (L') module. Then ad L(L') is given by 

adx(y) = [x, y ]  = -(-l)'x''y'[y, X I  (3.1) 

wherex ,yEL(L ' ) .  From L = ( i Q , , Q B } ~ & + L i a n d [ L i , L i ] = O w e f i n d  L i t o b e a n  
invariant module, and since [ &, Li] = Li # 0, the adjoint representation is not com- 
pletely reducible. This is also true for L'. The matrix structure of the adjoint representa- 
tion of L is given by 

(: !3 ad( i Q,) = 

For L', we have 

0 0 -1 

( 3 . 2 ~ )  

(3.2b) 

(3.3a) 

(3.36) 

(3.3c) 

3.2. Indecomposable representation of L 

We know that the eigenvalue of iQ, gives the ghost number, i.e. in any representation 
space iQc should be diagonalisable with integral eigenvalues. This is not necessary 
for the analysis below. We have only to make use of the assumption that iQc acts as 
a diagonalisable operator on the module and the eigenvalues are denumerable. 

Consider iQc + p and QB + q to be the operators on V: 

v = 0, V(,) v(,) = {lx) E vlp(x) = nlx)}. (3.4) 
Now for each Ix) E V if q(x)  # 0, then either q1x)E V(n+')  or qlx) = 0. 

So V is further decomposed into L-invariant submodules. If qlx) # 0, then the 2~ 
subspace spanned by Ix), q(x) is an indecomposable submodule of V. If q(x)  # 0, then 
Ix) will be called a parent state and qlx) a daughter state. 
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Let W',,' = span{/x), qlx)}, I x )  E V'") and q/x)  # 0. A state I x )  will be called a singlet 
if q l x )  = 0 and Ix) f s l y ) ,  i.e. singlets are I D  representations of L. Then matrices p and 
q in each W'"'  are 

q = ( ;  0"). 
The most general decomposition of V is given by 

v = @ W ' " Q  v, 

(3 .5b )  

(3.6) 

where @ V, denotes the span of singlet states. However there is a certain non-uniqueness 
in the definition of parent states and singlets, for if Ix) is a parent state and Iy) is a 
singlet state, then Ix)+ Iy) is a parent state. This lack of uniqueness is removed by 
introducing a scalar product. Another observation is that, in the decomposition given 
in ( 3 . 6 ) ,  the eigenstates of p may not be multiplicity free. Let the multiplicity associated 
with lx,,) be nk,  (i.e. PIX,, i)= nlx,,, i): i = 1,. . . , n k ) .  W'")  is the module direct sum 
of nk copies of 2~ L modules. 

4. The metric 

The hermiticity conditions on Qc and QB imply that 

p +  = ( ioc)+  = - p  q+ = q. (4.1) 

These cannot be realised if V has a positive definite scalar product (i.e. if V is a Hilbert 
space). Hence we assume that there exists a non-degenerate Hermitian indefinite form 
on V, i.e. (,). A convenient basis is constructed for representing the metric. We 
consider the subspaces W'") only; V, can be dealt with analogously. Let 1m)E W'm)  
and n E W',). Since (mJpln)=(nlp+lm) = -m(nlp lm) ,  whence ( m  + n )  (min)  = 0, then 
(mln)=O unless m + n  =O. Therefore, due to the non-degeneracy of the metric each 
subspace W',) has a unique conjugate space, namely W(-n) .  Let Ix,,, i) and qlx,,, i )  
( i  = 1,. . , , nk)  be a basis for W'")  and lx-,,, i) be set of linearly independent vectors 
such that (x-,,, ilx,,, i) = 1. The non-degeneracy of the form ( , ) assures the existence 
of such vectors and also that the set {Ix-,,, i), qlx-,,, i): i = 1 ,  . . . , nk}  spans 

We describe below a process of 'orthonormalisation'. First, let n > 0 and 

IYn,  2)=Ixn9 2)-((x-n, llxn92))lxn, 1). (4.2) 

Then, ly,, 2) is orthogonal to lx-,,, 1). Let IyL,,, 2) be a vector in W'"') such that 
(yy,,, 21y,, 2) = 1 and consider 

I Y - n ,  2)= lyLn,  2)-((xn9 llyyn, 2))lx-n, 1). 

We have (x,,, lly-,,, 2)=0  and since lx-,,, 1) is orthogonal to ly,, 2) we still have 
(y-,,, 21y,,, 2)= 1 .  Continuing this process we obtain the set S = { l y n ,  i), Iy-,,, i): i >  1) 
of linearly independent vectors such that (x,,, lly-,,, i) = (x-,,, lly,,, i) = 0. Next, we 
consider the subspace spanned by S and complete the 'orthonormalisation' by induc- 
tion. This can be done in each W ( n )  for n = 1,2,. . . . The physical subspace must be 
a Hilbert space, i.e the norm must be positive definite. This is possible only in 

U"=(lx): p lx )=O}  (4.3) 
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Since this does not affect the hermiticity condition we assume the form q to be positive 
definite on U'. Then the matrix for 7 is given by 

7 m n . y  = ( x m ,  i lxn, j )= 6 m , - n a O .  

Finally, we make an observation. Suppose A ( " ) c  V, be a subspace of singlets with 
nk denoting the multiplicity of the eigenvalue n ( nk = dim A'")) ,  then the metric (and 
hence the scalar product) is left invariant by S,, the symmetric group of order nk acting 
on A'").  This is also true for doublets. 

4.1. B R S  doublets 

Consider U(, '= W " 0  W(-"' .  Then 

(4 .4)  

Here, p and q denote the restriction of these operators to the subspace U'").  The 
hermiticity of QB with respect to the scalar product implies 

74 = 9+T. (4 .6)  
Now, suppose Ix,) is a parent state and qlx,,) = lx-,,). Further, QBlx,) = Jx,-,) and 

hence ( X - ( , , - ~ ) / Q ~ ~ X ~ )  = 1, i.e. ( X ~ ~ Q ~ ~ X ~ ~ , , ~ ~ ~ )  = 1. This implies lx-,,) = QBlx-(,,-l~) is a 
daughter state. We conclude that 7 sends parent states to daughter states and (by a 
similar argument) daughter states to parent states. Moreover, q2 = 1. The matrix of q 
in U ( " )  is given by 

(4 .7)  

4.2. B R S  singlet states 

Here, again we have vnm = 6,,-,,l. Now if qlx,, )  = 0 then qlx-, , )  = 0. This follows from 
(4 .6) .  Thus q maps singlets to singlets and using the invertibility of q we have 

v ( V s ) =  v,. (4 .8)  
The matrices in V, are therefore given by 

* = ( n  0 -n  O) ( 4 . 9 a )  

4 = (0) ( 4 . 9 b )  

.=(f ;). (4 .9c)  
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5. Construction of BRS groups 

5.1. B R S  group 

We consider first a 213 realisation of the BRS group as a transformation group in 2D 

superspace. Let 

X = span{U, pl}. (5.1) 

The 2~ graded vector space is spanned by U and by the Grassmann variable P I .  Then 
we define transformations 

q : x + x  

q ( a )  = P 1 *  a a E x. ( 5 . 2 )  

Obviously, q2 = 0 and q is a &-graded linear operator having degree of homogeneity 
one. In matrix form we have 

We also define a semisimple operator p :  

p : x + x  

p(1) = n . %  P(P1) = ( n  + 1)Pl.  
Then, in the matrix form 

P = ( ”  0 n + l  O ). 
Let 3 be the group generated by 

and 

exp(Aq) = 1 + Aq. 

(5.3) 

(5.4) 

(5.5) 

(5 .5a)  

(5.5b) 

Here A is an anticommutating ‘fundamental parameter’. Also {A, PI}  = [ A ,  q ]  = 0. We 
note that 

exp(Aq) exp(A’q) =exp(A +A’)q. (5.6) 

exp( -Aq) = 1 - Aq. ( 5 . 7 )  

Thus, the inverse of exp(Aq) is 

The most general transformation is given by 

Its inverse is 

exp( - tn )  
-A exp(-tn) exp[-r(n+l)]  

I t  is easy to verify that these matrices form a super Lie group [4]. 

(5.9) 
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The supermanifold structure is that of a submanifold of 9”) where 93‘’) = W x W 
and W is the 2~ Banach-Grassmann algebra. If we write U ,  = (x, P I ) ,  x E @, for a 
general element of the space X ,  then the transformations are given by 

U = U ,  . A,, (5.10) 

that is 

x’ = x exp( t n )  

P I = [xA + P 

(5.1 la) 

(5.1 1 b) 

We note that, like ordinary Lie groups, the generators p and q of the graded Lie 
algebra are given by 

exp[ t (  n + 1 )I. 

a 2 U :  
(P),” = - 

a t  au, 
t = 0 ;  /L, v=l,2 

and 

a2u: 
ahau, 

(q ) ,”  =- A =O; t = 0 .  

( 5 . 1 2 ~ )  

(5.12b) 

5.2. Full B R S  group 

Before considering the full BRS group, we describe a higher-dimensional representation, 
viz. the quartet representation of L. Let 

V = X O Y  (5.13) 

where 

x = span{U, PI1 Y=span{P,, P I . P Z 1  (5.14) 

Here p 1 . p 2  is the Grassmann product, V is a 2,-graded vector space with {U, P1.Pz} 
and P I ,  pz spanning the even and odd parts respectively. 

Then we define q : V +  V, 

dff) = PI. f f € V  (5.15) 

and p :  V +  V by 

p(U) = nB 

P ( P I )  = ( n +  1)PI P ( P 2 )  = mPz (5.16) 

P ( P 1 .  P 2 )  = ( m  + I ) P I *  P 2 .  

We see that this is the (direct) sum of two indecomposable representations of L and 
the corresponding group representation can be obtained by taking a direct product of 
such representations. To obtain the representations of P 4 we have to use m = - ( n  + 1). 

It is interesting to note that, for the full BRS algebra, we have to modify equation 
(5.16) and define the action of 6, by 

4 ( f f ) = P 2 .  ff f f € V  (5.17) 
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Then in the matrix form 
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0 0 0  

0 0 0  
0 - 1 0 0  

We define a general transformation generated by q and 4 :  

U; = U,( V A ) ) , ”  

u : = ( X , P l , P z , P 1 . P 2 )  

p, v = 1,2,3,4.  

Here 

and 

T (  A ) = exp( Aq + xg) 
where A, 1 are anticommutating ‘parameters’ and satisfy 

[A,  q1+ = (1, 41+ = 0 
CA, P, l+  = 0 i = l , 2  

For notational convenience, let us substitute 
with similar relations for h: 

41=9 q r =  4 

(5.18a) 

(5.186) 

( 5 . 1 8 ~ )  

(5.19) 

(5.20) 

(5.21)  

(5.22) 

(5.23) 

(5.24) 

(5.25a) 

(5.25 b )  

( 5 . 2 5 ~ )  

(5.25d) 
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Again we notice the connection between the derivatives and the generators of the 
above transformations: 

a2u: 
d ~ ,  au, 

( q u ) l , v  =- a = 1,2; p, v = 1,2,3,4. (5.26) 

We derive next a continuum of transformations from a single transformation T ( A ) .  
Define the set {e,, a = 1,2} where 

0, = K,A, a,c7=1,2 (5.27) 

and K is an arbitrary 2 x 2  matrix with complex-valued c-number entries. The 8, 
satisfy the same relations (5.22) as A,. 

The set of K matrices above includes the null matrix. We define 

T ( 0 )  = 1 = exp(&4,). 

T(  e )  T(  e’)  = T (  e + e ’ )  
We find then 

which bears a formal similarity to the Campbell-Housdorff formula. 
As a consequence of equation (5.29), we have 

exp(A,q,) exp(A2q2) = exp(~ ,q1+~2q2)  

which is a result of the anticommutating relations between q1 and q2.  
The most general transformation by the full BRS group is given by 

= u[exp(e,q,) exp(tp)l,, 

= u,z,,. 
Correspondingly, we have under Z 

x’ = x exp( n t )  

pi =xBl exp(n t )+pl  exp[(n+l ) t ]  

pi  = xe, exp(nt) + P I  exp[(n - 1)t]  

(PIP2)’  = (x + 1)8, 9 e2 exp(nt) - P I  e2 exp[( n + I )?]+ P r  + el exp[(n - l ) r ] .  

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32a) 

(5.326) 

(5 .32~)  

(5.32d) 

Thus we see that the anticommutating coordinates are translated (with scale factors) 
under this group. Since BRS groups are of exponential type, Lagrangian field theories 
possessing such symmetry structures will locally generate the BRS algebras as symmetry 
algebras. However, the group structures are necessary for the formulation of the theory 
in the language of principal super fibre bundles (PSFB) [lo]. As a result, we get an 
insight into the ‘geometric’ nature of the auxiliary fields in 2’. This aspect of the 
‘classical’ theory is investigated in the next section. 

6. BRS groups and super fibre bundles 

Let B be the Grassmann algebra generated by two odd elements 0,  and O z .  It is clear 
from equations (5.32) that the BRS group is the group of translation (and dilation) on 
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B. The subgroup generated by q1 may be identified with B itself. Using the notation 
of § 2, let 

h = B a g .  (6.1) 

Define the product in h by 

[e@x, e '@ Y] = eew[x, Y] e, e fEB;  x, YEg. (6.2) 

Then h becomes a graded left B module [4]. An even element T E  hij, in the basis {X,} 
of g, is given by 

T=CI"@X,+C e , c f @ x , + C  e,.~,"@x,+C(e,e,~")~x,. (6.3) 

Here I" and R" are even and c' odd, ho is a real Lie algebra of dim 4r (where r = dim g). 
There exists a unique connected and simply connected Lie group Ho with ho as the 
Lie algebra. Then Ho can be given a superanalytic structure such that Ho is a super 
Lie group [4] (SLG). Now, let 

M = ( B)4s2 = ( x (Bi)'. (6.4) 

Then M is the superspace with coordinates { x ~ ,  e l ,  19,: p = 0, 1,2,3}. Consider the 
product SPFB, 

(6.5) 

The definition of the connection form is modelled on that of the classical case. Let 
P ' ( M ' ,  G') be an SPFB and T :  P'-  M '  the projection map. P' is locally trivial by 
definition. 

Let (U,, $,) be a covering of M '  such that $, : T-'( U,) + U, x G' is the local 
trivialisation. If U, n U, is non-empty then (cl, 0 4,' induces the transition functions 
ppa : U, n U, + G. A connection on P is an assignment of gd-valued forms (g' being 
the super Lie algebra of G') on each U such that 

wp = Pi; dP=p+P,Lw,P,p. (6.6) 

Here it is assumed that G' is a matrix group so that (6.6) makes sense. In the case of 
P in (6.5) global triviality implies that any superanalytic function M -$ G defines a 
transition function. 

Let us drop the tensor product notation in (6.3) and let the 'parameters' l a ,  c9 and 
ra be x dependent. Then, 

exp T = exp(I"(x)X, + e,cf(x)X, + e,c;(x)X,+ e ,e2R"(~)X,) .  

P = M x Ho. 

Since we are interested in the BRS transformation we set I" = 0. The term exp( lax,)  
defines the usual gauge transformation of classical Yang-Mills fields. Let 

~ = e x p ( e , c ^ ~ + e , c ^ ~ + e , e , Z ? ) .  (6.7) 

Now, given a form a, dx', it can be considered as an ho-valued form with 

w = Z - '  dzfZ- 'A,  dx'Z (6.8) 

Here Z? = R"(x)  X,, etc, are 'vectors' in the isotopic charge space. 

components along e l  and 8' equal to zero. Let (p,, = Z. Then from (6.6) 

is a 1-form on M. The I-form defines a curvature 2-form 

R = d o  +; [U ,  w]. (6.9) 
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It can be verified that 0 is of the form + p p  dx’ A dx”. The translations of tll and e2 
given in equations (5.25) (setting pi = Bi therein) give rise to the BRS transformation 
of the fields. 

We note that it is the usual practice to write 

e l ,  02 e, e 
c1, c2 3 ?, c 

R + iB + 4( c x 5 ) .  

If we write 

w = R,(x,  @,e) dx, + +(x, 0, e) d e +  q ( x ,  8, e) d e  (6.10) 

then the superfields R,, q and + may be calculated from (6 .8 ) .  The Lagrangian 2 is 
given by 

F, e F p  +A, e awB -id,?. D,c ++&B.  B+$B. B. (6.11) 

This is the most general Lagrangian that is invariant under ghost scale transformation 
and rigid gauge transformations. 

1 - - -- 
4g2 
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